If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+100X+101=0
a = 1; b = 100; c = +101;
Δ = b2-4ac
Δ = 1002-4·1·101
Δ = 9596
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{9596}=\sqrt{4*2399}=\sqrt{4}*\sqrt{2399}=2\sqrt{2399}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(100)-2\sqrt{2399}}{2*1}=\frac{-100-2\sqrt{2399}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(100)+2\sqrt{2399}}{2*1}=\frac{-100+2\sqrt{2399}}{2} $
| 49x+12.5=10 | | -6•(-1m-1)=-6 | | (60+x)×(40+x)=0 | | -2(3x-4)=5(2-x) | | 15-7x=8x-72 | | 0.1*x=3 | | 3(4m+6)−8=130 | | 25=y | | 5n−6=2n+15 | | 7m+4=4m+22 | | (17x+21)+123°=180 | | 18+2(5-x)=-17+45 | | 15/X=(2r)^2/r^2 | | (17x+21)=123° | | y=|-9+7| | | 4(-2x+4)+3x-1=0 | | 3(4-r)=-12 | | (x+7)^2-40=0 | | 1/4x20=x | | 13/24x48=x | | 1/2(6-x)=14 | | x^2=48-5x | | 7g+4=2g+54 | | -2x+13-32+10x=-1 | | -5t^2+30=0 | | 4x-10-7x=2 | | (30-2x)(20-2x)=416 | | -1/3x-13=42 | | 2,6x–3+4,7x–6=3,8x–2 | | 96=-3y;y | | 5s+s=-48;s | | (x+1)(x-1)+2x=x^2-5 |